Part Number Hot Search : 
CEU20P06 CZRF2V7B T9687SCU BA3703F 1138L 322125 PT801 S5S4M
Product Description
Full Text Search
 

To Download MRF7S19170HR308 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mrf7s19170hr3 mrf7s19170hsr3 1 rf device data freescale semiconductor rf power field effect transistors n - channel enhancement - mode lateral mosfets designed for cdma base station applications with frequencies from 1930 to 1990 mhz. can be used in class ab an d class c for all typical cellular base station modulations. ? typical single - carrier w - cdma performance: v dd = 28 volts, i dq = 1400 ma, p out = 50 watts avg., full frequency band, 3gpp test model 1, 64 dpch with 50% clipping, channel bandwidth = 3.84 mhz, input signal par = 7.5 db @ 0.01% probability on ccdf. power gain ? 17.2 db drain efficiency ? 32% device output signal par ? 6.2 db @ 0.01% probability on ccdf acpr @ 5 mhz offset ? - 37.5 dbc in 3.84 mhz channel bandwidth ? capable of handling 5:1 vswr, @ 32 vdc, 1960 mhz, 170 watts cw output power ? p out @ 1 db compression point  170 watts cw features ? 100% par tested for guaranteed output power capability ? characterized with series equivalent large - signal impedance parameters ? internally matched for ease of use ? integrated esd protection ? greater negative gate - source voltage range for improved class c operation ? designed for digital predistortion error correction systems ? rohs compliant ? in tape and reel. r3 suffix = 250 units per 56 mm, 13 inch reel. table 1. maximum ratings rating symbol value unit drain - source voltage v dss - 0.5, +65 vdc gate - source voltage v gs - 6.0, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg - 65 to +150 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 80 c, 170 w cw case temperature 72 c, 25 w cw r jc 0.25 0.31 c/w 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/development tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. document number: mrf7s19170h rev. 1, 12/2008 freescale semiconductor technical data mrf7s19170hr3 mrf7s19170hsr3 1930 - 1990 mhz, 50 w avg., 28 v single w - cdma lateral n - channel rf power mosfets case 465c - 02, style 1 ni - 880s mrf7s19170hsr3 case 465b - 03, style 1 ni - 880 mrf7s19170hr3 ? freescale semiconductor, inc., 2006, 2008. all rights reserved.
2 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) 1a (minimum) machine model (per eia/jesd22 - a115) b (minimum) charge device model (per jesd22 - c101) iv (minimum) table 4. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 1 adc on characteristics gate threshold voltage (v ds = 10 vdc, i d = 372 adc) v gs(th) 1.2 2 2.7 vdc gate quiescent voltage (v ds = 28 vdc, i d = 1400 madc) v gs(q) ? 2.7 ? vdc fixture gate quiescent voltage (1) (v dd = 28 vdc, i d = 1400 madc, measured in functional test) v gg(q) 4 5.4 7.6 vdc drain - source on - voltage (v gs = 10 vdc, i d = 3.72 adc) v ds(on) 0.1 0.15 0.3 vdc dynamic characteristics (2) reverse transfer capacitance (v ds = 28 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c rss ? 0.9 ? pf output capacitance (v ds = 28 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c oss ? 703 ? pf functional tests (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq = 1400 ma, p out = 50 w avg., f = 1932.5 mhz and f = 1987.5 mhz, single - carrier w - cdma, 3gpp test model 1, 64 dpch, 50% clipping, par = 7.5 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. power gain g ps 16 17.2 19 db drain efficiency d 29 32 ? % output peak - to - average ratio @ 0.01% probability on ccdf par 5.7 6.2 ? db adjacent channel power ratio acpr ? - 37.5 -35 dbc input return loss irl ? -16 -9 db 1. v gg = 2 x v gs(q) . parameter measured on freescale test fixture, due to resistive divider network on the board. refer to test circuit schematic. 2. part internally matched both on input and output. (continued)
mrf7s19170hr3 mrf7s19170hsr3 3 rf device data freescale semiconductor table 4. electrical characteristics (t c = 25 c unless otherwise noted) ? continued characteristic unit max typ min symbol typical performances (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq = 1400 ma, 1930 - 1990 mhz bandwidth video bandwidth @ 170 w pep p out where im3 = - 30 dbc (tone spacing from 100 khz to vbw) imd3 = imd3 @ vbw frequency - imd3 @ 100 khz <1 dbc (both sidebands) vbw ? 25 ? mhz gain flatness in 60 mhz bandwidth @ p out = 170 w cw g f ? 0.5 ? db average deviation from linear phase in 60 mhz bandwidth @ p out = 170 w cw ? 2.06 ? average group delay @ p out = 170 w cw, f = 1960 mhz delay ? 4.7 ? ns part - to - part insertion phase variation @ p out = 170 w cw, f = 1960 mhz, six sigma window ? ? 16 ? gain variation over temperature (-30 c to +85 c) g ? 0.015 ? db/ c output power variation over temperature (-30 c to +85 c) p1db ? 0.01 ? dbm/ c
4 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 figure 1. mrf7s19170hr3(hsr3) test circuit schematic z12 0.060 x 0.420 microstrip z13* 0.197 x 0.083 microstrip z14* 0.332 x 0.083 microstrip z15* 0.158 x 0.083 microstrip z16* 0.572 x 0.083 microstrip z17, z18 0.063 x 0.220 microstrip z19 0.160 x 0.083 microstrip z20, z21 1.120 x 0.080 microstrip pcb taconic tlx - 0300, 0.030 , r = 2.5 * variable for tuning z1* 0.588 x 0.083 microstrip z2* 0.146 x 0.083 microstrip z3* 0.068 x 0.083 microstrip z4 0.865 x 0.098 microstrip z5 0.154 x 0.098 microstrip z6 0.271 x 0.787 microstrip z7 1.410 x 0.080 microstrip z8 0.194 x 0.787 microstrip z9 0.115 x 1.360 microstrip z10 0.230 x 1.360 microstrip z11 0.185 x 1.120 microstrip v bias v supply rf output rf input dut c5 c4 r1 z1 z2 z3 z4 c7 z10 z5 r2 z7 r3 z8 z11 z12 z13 z14 z15 c1 z6 z16 c11 c10 c12 c13 c14 z9 z20 c8 c15 c16 c19 z21 c9 c17 c18 + c2 c6 c3 z17 z18 z19 table 5. mrf7s19170hr3(hsr3) test circuit component designations and values part description part number manufacturer c1, c2 1.8 pf chip capacitors atc100b1r8bt500xt atc c3, c8, c9, c10, c11 8.2 pf chip capacitors atc100b8r2ct500xt atc c4 100 pf chip capacitor atc100b101jt500xt atc c5 100 nf chip capacitor 200b104mt atc c6, c15, c16, c17, c18 10 f chip capacitors c5750x5r1h106mt tdk c7 0.5 pf chip capacitor atc100b0r5bt500xt atc c12 1.5 pf chip capacitor atc100b1r5bt500xt atc c13 0.3 pf chip capacitor atc100b0r3bt500xt atc c14 0.8 pf chip capacitor atc100b0r8bt500xt atc c19 470 f, 63 v electrolytic capacitor, axial ekme630ell471m12x25ll united chemi - con r1, r2 10 k , 1/4 w chip resistors crcw12061002fkea vishay r3 10 , 1/4 w chip resistor crcw120610r0fkea vishay
mrf7s19170hr3 mrf7s19170hsr3 5 rf device data freescale semiconductor figure 2. mrf7s19170hr3(hsr3) test circuit component layout mrf7s19170h rev 0 cut out area r1 r2 c3 c4 c5 r3 c7 c1 c2 c9 c17 c18 c13 c12 c14 c11 c10 c8 c15 c16 c19 c6
6 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 typical characteristics g ps , power gain (db) 2040 1880 irl g ps parc f, frequency (mhz) figure 3. output peak - to - average ratio compression (parc) broadband performance @ p out = 50 watts avg. 1980 1940 1920 10 18 17 16 15 14 13 12 11 ?2.5 35 34 33 32 31 ?1 ?1.5 ?2 d irl, input return loss (db) parc (db) ?30 ?10 ?15 ?20 ?25 d , drain efficiency (%) 1960 1900 2020 2000 v dd = 28 vdc, p out = 50 w (avg.), i dq = 1400 ma single?carrier w?cdma, 3.84 mhz channel bandwidth, par = 7.5 db @ 0.01% probability (ccdf) g ps , power gain (db) 2040 1880 irl g ps parc f, frequency (mhz) figure 4. output peak - to - average ratio compression (parc) broadband performance @ p out = 84 watts avg. 1980 1940 1920 10 18 17 16 15 14 13 12 11 ?4.2 44 43 42 41 40 ?3 ?3.4 ?3.8 d irl, input return loss (db) parc (db) ?30 ?10 ?15 ?20 ?25 d , drain efficiency (%) 1960 1900 2020 2000 v dd = 28 vdc, p out = 84 w (avg.), i dq = 1400 ma single?carrier w?cdma, 3.84 mhz channel bandwidth, par = 7.5 db @ 0.01% probability (ccdf) figure 5. two - tone power gain versus output power 100 15 19 1 p out , output power (watts) pep v dd = 28 vdc, f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing 17 16 10 400 g ps , power gain (db) 18 1750 ma 700 ma 1400 ma 1050 ma i dq = 2100 ma figure 6. third order intermodulation distortion versus output power ?10 p out , output power (watts) pep 10 ?20 ?30 ?40 100 ?60 ?50 v dd = 28 vdc, f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing 1 intermodulation distortion (dbc) imd, third order 400 1750 ma 1400 ma 1050 ma i dq = 700 ma 2100 ma
mrf7s19170hr3 mrf7s19170hsr3 7 rf device data freescale semiconductor typical characteristics figure 7. intermodulation distortion products versus output power p out , output power (watts) pep imd, intermodulation distortion (dbc) ?60 ?10 100 ?40 ?50 ?30 ?20 7th order 5th order 3rd order 400 v dd = 28 vdc, i dq = 1400 ma f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing figure 8. intermodulation distortion products versus tone spacing two?tone spacing (mhz) 10 ?60 v dd = 28 vdc, p out = 170 w (pep), i dq = 1400 ma two?tone measurements (f1 + f2)/2 = center frequency of 1960 mhz im3?u ?10 ?20 ?40 1 100 imd, intermodulation distortion (dbc) ?50 ?30 im3?l im5?u im5?l im7?l im7?u 0 figure 9. output peak - to - average ratio compression (parc) versus output power 1 p out , output power (watts) ?1 ?3 ?4 30 actual ideal 0 ?2 output compression at the 0.01% probability on the ccdf (db) 35 80 25 50 45 40 35 30 d , drain efficiency (%) v dd = 28 vdc, i dq = 1400 ma f = 1960 mhz, input par = 7.5 db ?1 db = 45 w ?2 db = 62 w ?3 db = 84 w figure 10. digital predistortion correction versus acpr and output power p out , output power (dbm) 50 ?70 ?20 40 42 41 ?30 ?40 ?50 ?60 acpr, upper and lower results (dbc) 43 44 45 46 47 uncorrected, upper and lower dpd corrected no memory correction dpd corrected with memory correction v dd = 28 vdc, i dq = 1400 ma, f = 1960 mhz single?carrier w?cdma, par = 7.5 db, acpr @ 5 mhz offset in 3.84 mhz integrated bandwidth 48 49 400 13 19 0 90 p out , output power (watts) cw figure 11. power gain and drain efficiency versus cw output power v dd = 28 vdc i dq = 1400 ma f = 1960 mhz t c = ?30  c 25  c 85  c 10 1 18 17 16 15 14 75 60 45 30 15 d , drain efficiency (%) g ps d g ps , power gain (db) 100 ?30  c 25  c 85  c 40 45 50 55 60 65 70 90 75 85 1
8 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 typical characteristics figure 12. power gain versus output power p out , output power (watts) cw g ps , power gain (db) 100 13 18 0 14 15 16 28 v i dq = 1400 ma f = 1960 mhz 300 v dd = 24 v 32 v figure 13. mttf factor versus junction temperature 17 200 250 10 8 90 t j , junction temperature ( c) this above graph displays calculated mttf in hours when the device is operated at v dd = 28 vdc, p out = 50 w avg., and d = 32%. mttf calculator available at http://www.freescale.com/rf. select software & tools/development tools/calculators to access mttf calculators by product. 10 7 10 6 10 5 110 130 150 170 190 mttf (hours) 210 230 w - cdma test signal 10 0.0001 100 0 peak?to?average (db) figure 14. ccdf w - cdma 3gpp, test model 1, 64 dpch, 50% clipping, single - carrier test signal 10 1 0.1 0.01 0.001 24 68 probability (%) w?cdma. acpr measured in 3.84 mhz channel bandwidth @  5 mhz offset. par = 7.5 db @ 0.01% probability on ccdf input signal ?60 ?110 ?10 (db) ?20 ?30 ?40 ?50 ?70 ?80 ?90 ?100 3.84 mhz channel bw 7.2 1.8 5.4 3.6 0 ?1.8 ?3.6 ?5.4 ?9 9 f, frequency (mhz) figure 15. single - carrier w - cdma spectrum ?7.2 ?acpr in 3.84 mhz integrated bw ?acpr in 3.84 mhz integrated bw
mrf7s19170hr3 mrf7s19170hsr3 9 rf device data freescale semiconductor z o = 10 z load z source f = 2040 mhz f = 1880 mhz f = 1880 mhz f = 2040 mhz v dd = 28 vdc, i dq = 1400 ma, p out = 50 w avg. f mhz z source  z load  1880 1.338 - j7.859 0.967 - j2.868 1900 1.515 - j7.609 0.942 - j2.725 1920 1.743 - j7.432 0.920 - j2.585 1940 2.007 - j7.352 0.893 - j2.449 1960 2.249 - j7.393 0.865 - j2.313 1980 2.410 - j7.553 0.841 - j2.192 2000 2.411 - j7.788 0.820 - j2.073 2020 2.244 - j7.995 0.802 - j1.957 2040 1.966 - j8.101 0.779 - j1.834 z source = test circuit impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 16. series equivalent source and load impedance z source z load input matching network device under test output matching network
10 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 alternative peak tune load pull characteristics 36 p3db = 53.97 dbm (249 w) p in , input power (dbm) v dd = 28 vdc, i dq = 1400 m, pulsed cw 12 sec(on), 10% duty cycle, f = 1960 mhz 56 54 52 37 39 38 41 40 44 42 actual ideal p1db = 53.25 dbm (211 w) 57 55 51 43 p out , output power (dbm) p6db = 54.33 dbm (271 w) note: measured in a peak tuned load pull fixture 53 58 59 60 61 35 34 33 32 test impedances per compression level z source z load p3db 2.34 - j9.24 0.79 - j2.94 figure 17. pulsed cw output power versus input power 36 p3db = 54.9 dbm (310 w) p in , input power (dbm) v dd = 32 vdc, i dq = 1400 ma, pulsed cw 12 sec(on), 10% duty cycle, f = 1960 mhz 56 54 52 37 41 40 44 42 actual ideal p1db = 54.14 dbm (259 w) 57 55 43 p out , output power (dbm) p6db = 55.27 dbm (336 w) note: measured in a peak tuned load pull fixture 53 58 59 60 61 62 35 34 33 45 38 39 test impedances per compression level z source z load p3db 2.34 - j9.24 0.79 - j2.94 figure 18. pulsed cw output power versus input power
mrf7s19170hr3 mrf7s19170hsr3 11 rf device data freescale semiconductor package dimensions case 465b - 03 issue d ni - 880 mrf7s19170h notes: 1. dimensioning and tolerancing per ansi y14.5m?1994. 2. controlling dimension: inch. 3. dimension h is measured 0.030 (0.762) away from package body. 4. recommended bolt center dimension of 1.16 (29.57) based on m3 screw. dim min max min max millimeters inches a 1.335 1.345 33.91 34.16 b 0.535 0.545 13.6 13.8 c 0.147 0.200 3.73 5.08 d 0.495 0.505 12.57 12.83 e 0.035 0.045 0.89 1.14 f 0.003 0.006 0.08 0.15 g 1.100 bsc 27.94 bsc h 0.057 0.067 1.45 1.70 k 0.175 0.205 4.44 5.21 n 0.871 0.889 19.30 22.60 q .118 .138 3.00 3.51 r 0.515 0.525 13.10 13.30 style 1: pin 1. drain 2. gate 3. source 1 3 2 d g k c e h f q 2x m a m bbb b m t m a m bbb b m t b b (flange) seating plane m a m ccc b m t m a m bbb b m t aa (flange) t n (lid) m (insulator) s m a m aaa b m t (insulator) r m a m ccc b m t (lid) s 0.515 0.525 13.10 13.30 m 0.872 0.888 22.15 22.55 aaa 0.007 ref 0.178 ref bbb 0.010 ref 0.254 ref ccc 0.015 ref 0.381 ref 4 ni - 880s mrf7s19170hs case 465c - 02 issue d notes: 1. dimensioning and tolerancing per ansi y14.5m?1994. 2. controlling dimension: inch. 3. dimension h is measured 0.030 (0.762) away from package body. dim min max min max millimeters inches a 0.905 0.915 22.99 23.24 b 0.535 0.545 13.60 13.80 c 0.147 0.200 3.73 5.08 d 0.495 0.505 12.57 12.83 e 0.035 0.045 0.89 1.14 f 0.003 0.006 0.08 0.15 h 0.057 0.067 1.45 1.70 k 0.170 0.210 4.32 5.33 n 0.871 0.889 19.30 22.60 r 0.515 0.525 13.10 13.30 style 1: pin 1. drain 2. gate 3. source 1 seating plane 2 d k c e h f m a m bbb b m t b b (flange) m a m ccc b m t m a m bbb b m t aa (flange) t n (lid) m (insulator) m a m ccc b m t m a m aaa b m t r (lid) s (insulator) s 0.515 0.525 13.10 13.30 m 0.872 0.888 22.15 22.55 bbb 0.010 ref 0.254 ref ccc 0.015 ref 0.381 ref aaa 0.007 ref 0.178 ref
12 rf device data freescale semiconductor mrf7s19170hr3 mrf7s19170hsr3 product documentation refer to the following documents to aid your design process. application notes ? an1955: thermal measurement methodology of rf power amplifiers engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices revision history the following table summarizes revisions to this document. revision date description 0 oct. 2006 ? initial release of data sheet 1 dec. 2008 ? corrected v ds to v dd in the rf test condition voltage callout for v gs(q) , and added ?measured in functional test?, on characteristics table, p. 2 ? updated typical performance table to provide better definition of characterization attributes, p. 3 ? updated part numbers in table 5, component designations and values, to latest rohs compliant part numbers, p. 4 ? adjusted scale for fig. 8, intermodulation distortion products versus tone spacing, to show wider dynamic range, p. 7 ? replaced fig. 13, mttf versus junction temperature with updated graph. removed amps 2 and listed operating characteristics and location of mttf calculator for device, p. 8 ? deleted output signal data from fig. 14, ccdf w - cdma 3gpp, test model 1, 64 dpch, 50% clipping, single - carrier test signal, p. 8
mrf7s19170hr3 mrf7s19170hsr3 13 rf device data freescale semiconductor information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2006, 2008. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 fax: +1 - 303 - 675 - 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mrf7s19170h rev. 1, 12/2008


▲Up To Search▲   

 
Price & Availability of MRF7S19170HR308

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X